Extensions 1→N→G→Q→1 with N=Dic10 and Q=C22

Direct product G=NxQ with N=Dic10 and Q=C22
dρLabelID
C22xDic10160C2^2xDic10160,213

Semidirect products G=N:Q with N=Dic10 and Q=C22
extensionφ:Q→Out NdρLabelID
Dic10:1C22 = D8:D5φ: C22/C1C22 ⊆ Out Dic10404Dic10:1C2^2160,132
Dic10:2C22 = D5xSD16φ: C22/C1C22 ⊆ Out Dic10404Dic10:2C2^2160,134
Dic10:3C22 = C2xC40:C2φ: C22/C2C2 ⊆ Out Dic1080Dic10:3C2^2160,123
Dic10:4C22 = C8:D10φ: C22/C2C2 ⊆ Out Dic10404+Dic10:4C2^2160,129
Dic10:5C22 = D4.D10φ: C22/C2C2 ⊆ Out Dic10404Dic10:5C2^2160,153
Dic10:6C22 = C2xD4.D5φ: C22/C2C2 ⊆ Out Dic1080Dic10:6C2^2160,154
Dic10:7C22 = C2xD4:2D5φ: C22/C2C2 ⊆ Out Dic1080Dic10:7C2^2160,218
Dic10:8C22 = D4:6D10φ: C22/C2C2 ⊆ Out Dic10404Dic10:8C2^2160,219
Dic10:9C22 = C2xQ8xD5φ: C22/C2C2 ⊆ Out Dic1080Dic10:9C2^2160,220
Dic10:10C22 = D5xC4oD4φ: C22/C2C2 ⊆ Out Dic10404Dic10:10C2^2160,223
Dic10:11C22 = C2xC4oD20φ: trivial image80Dic10:11C2^2160,216
Dic10:12C22 = D4:8D10φ: trivial image404+Dic10:12C2^2160,224

Non-split extensions G=N.Q with N=Dic10 and Q=C22
extensionφ:Q→Out NdρLabelID
Dic10.1C22 = D8:3D5φ: C22/C1C22 ⊆ Out Dic10804-Dic10.1C2^2160,133
Dic10.2C22 = SD16:D5φ: C22/C1C22 ⊆ Out Dic10804-Dic10.2C2^2160,136
Dic10.3C22 = SD16:3D5φ: C22/C1C22 ⊆ Out Dic10804Dic10.3C2^2160,137
Dic10.4C22 = D5xQ16φ: C22/C1C22 ⊆ Out Dic10804-Dic10.4C2^2160,138
Dic10.5C22 = Q16:D5φ: C22/C1C22 ⊆ Out Dic10804Dic10.5C2^2160,139
Dic10.6C22 = D40:7C2φ: C22/C2C2 ⊆ Out Dic10802Dic10.6C2^2160,125
Dic10.7C22 = C2xDic20φ: C22/C2C2 ⊆ Out Dic10160Dic10.7C2^2160,126
Dic10.8C22 = C8.D10φ: C22/C2C2 ⊆ Out Dic10804-Dic10.8C2^2160,130
Dic10.9C22 = C20.C23φ: C22/C2C2 ⊆ Out Dic10804Dic10.9C2^2160,163
Dic10.10C22 = C2xC5:Q16φ: C22/C2C2 ⊆ Out Dic10160Dic10.10C2^2160,164
Dic10.11C22 = D4.8D10φ: C22/C2C2 ⊆ Out Dic10804Dic10.11C2^2160,171
Dic10.12C22 = D4.9D10φ: C22/C2C2 ⊆ Out Dic10804-Dic10.12C2^2160,172
Dic10.13C22 = Q8.10D10φ: C22/C2C2 ⊆ Out Dic10804Dic10.13C2^2160,222
Dic10.14C22 = D4.10D10φ: C22/C2C2 ⊆ Out Dic10804-Dic10.14C2^2160,225

׿
x
:
Z
F
o
wr
Q
<